ぱらぱらめくるシリーズ

10 Laplacian Eigenvalues of Threshold Graphs ぱらぱらめくる『Graphs and Matrices』

10.1 Majorization ベクトルの要素の和が等しいような2つのベクトルがあって、その累積和ベクトルの要素のすべてについて、後者のそれが前者のそれ以上であるとき、前者は後者でMajorzationされているという そのMajorizationでできる行列がある 10.2 Thres…

9 Resistance Distance ぱらぱらめくる『Graphs and Matrices』

Distance を考えるとき、最短経路のみが問題になるが、非最短経路との相対的な関係で最短経路とその距離とを考えることも有用。そのような距離がResistance distance Laplacianの章で出てきた行列H(g-inverse of L)を使うと となる 三角不等式も成り立つ ネ…

ぱらぱらめくる『Graphs and Matrices』2 Incidence Matrix

2.1 ランク 有向グラフGのn個のノードと、m個のエッジ。nxm行列で、エッジの始点と終点とを1,-1で表したもの、それがIncidence matrix Q(G) Q(G)の列和はゼロ、行ベクトルは線形非独立 連結グラフのランクはn-1、k個の連結グラフの集合ならランクはn-k k個の…

8 Distance Matrix of a Tree ぱらぱらめくる『Graphs and Matrices』

木のDistance matrixの場合、 木でないグラフのDistance matrixの場合は、サイクルとそうでない部分(木)に分けて行く 木のDistance matrixのLaplacian、固有値を考えることで有用な性質がある

7 Algebraic Connectivity ぱらぱらめくる『Graphs and Matrices』

Laplacian matrixの最小固有値は0。二番目に小さい固有値をalgebraic connectivityと言う。非連結グラフのalgebraic connectivityは0。完全グラフのそれはn 7.1 Preliminary results 7.2 Classification of trees(Types I and II) 7.3 Monotocinicty propert…

ぱらぱらめくる『Graphs and Matrices』大雑把なまとめ

グラフはノードとエッジでできており、それにIDを振ると色々な行列が出来る 行列は正方行列と非正方行列とがある 非正方行列の代表はIncidence matrix(ノードとエッジの関係を表した行列) 正方行列はノードxノードの行列があり、いろいろある グラフの特徴…

6 Regular Graphs ぱらぱらめくる『Graphs and Matrices』

全ノードの次数が等しいグラフがRegular 6.1 Perron-Frobenius theory 成分が正である実正方行列には唯一つの最大実固有値が存在し、それに対応する固有ベクトルの各成分は厳密に正である、という主張。グラフのノードの重みづけ(ページランク)計算などに用…

5 Cycles and Cuts ぱらぱらめくる『Graphs and Matrices』

Incidence matrix Qのnull spaceをcycle subspace、Q^Tのnull space を cut subspaceと呼ぶ edgeのセットをうまく取り出して足し合わせると、キャンセルアウトするのがcycleなので、incidence matrixのcolumnsの線形和でゼロベクトルができれば、その線形和…

ぱらぱらめくる『Graphs and Matrices』1 Preliminaries

1.1 Matrices 行列、転置、対角行列 Trace and determinent ベクトル空間とランク Minorsは行の一部と列の一部とを取り出した部分行列。と書くと、行の部分集合S、列の部分集合TでのMinor。はSとTの補集合によるMinor。は1行、1列を除いたMinor 特に、行と…

4 Laplacian Matrix ぱらぱらめくる『Graphs and Matrices』

エッジが無いノードペアは0、エッジありのペアは-1、対角成分はノードの次数であるような行列がLaplacian matrix L=D-A (ただし、Dは対角行列で対角成分がノードの次数、Aはadjacency matrix) L=Q Q^T (ただしQはincidence matrix)でもある Lは対称で半正定…

ぱらぱらめくる『Graphs and Matrices』

Graphs and Matrices (Universitext)作者: Ravindra B. Bapat出版社/メーカー: Springer発売日: 2014/10/02メディア: ペーパーバックこの商品を含むブログを見る 目次 1 Preliminaries 2 Incidence Matrix 3 Adjacency Matrix 4 Laplacian Matrix 5 Cycles a…

4 Orthogonal expansions in curvelinear coordinates ぱらぱらめくる『Engineering applications of noncommutative harmonic analysis』

1次元での、微小量は パラメタを使うと まっすぐでない座標系 curvelinearな座標系ができて は計量テンソル。はヤコビアン行列 N次元空間微小体積は 円、回転 円や回転には三角関数を使う方法もあるが、うまくパラメタ表現をすれば、四則演算で表現できる N…

3 Strum-Liouville expansions and related transforms ぱらぱらめくる『Engineering applications of noncommutative harmonic analysis』

物理学では二階の微分方程式で表されるものがとても多い そして『あらゆる 2 階の線形微分方程式は「スツルム・リウヴィル型の微分方程式」に書き直せる』とのこと(こちら) そんな微分方程式を境界条件を付けて解くとき、それが、固有値と固有値に対応する関…

ぱらぱらめくる『Engineering applications of noncommutative harmonic analysis』

Engineering Applications of Noncommutative Harmonic Analysis: With Emphasis on Rotation and Motion Groups作者: Gregory S. Chirikjian,Alexander B. Kyatkin出版社/メーカー: CRC Press発売日: 2000/09/28メディア: ハードカバーこの商品を含むブログ…

12〜 応用例 ぱらぱらめくる『Engineering applications of noncommutative harmonic analysis』

12 動き回るロボットにアームがついている。それを使用・操作したら、工場空間のどこにどれくらいの確率でロボットアームが存在するかの密度分布を求める、とか 13 2次元画像解析。標的の形が写っているかどうか。CT写真 14 写真の解析?姿勢認識とか? 15 …

9 10 11 回転関連の群論、ユークリッド移動群の調和解析 Motion groupsのFFT ぱらぱらめくる『Engineering applications of noncommutative harmonic analysis』

それらが、定義からできるよ 式変形はこうだよ という話

8 群の調和解析 ぱらぱらめくる『Engineering applications of noncommutative harmonic analysis』

ここから本番 非可換群のフーリエ解析 有限群のそれ コンパクト リー群のそれ コンパクトでない非可換unimodular群のそれ とにかく、1次元実軸での畳み込みとフーリエ変換が群の上に定義できることが示された 結論から言うと次のようになる まず、1次元実数…

2 Classical Fourier Analysis ぱらぱらめくる『Engineering applications of noncommutative harmonic analysis』

フーリエ級数は、三角関数を重みづけ用の基底関数とする 三角関数は周期関数 周期性を円周上のぐるぐる回りと考えると、「周期的に同じ点」になる。同じ点は同一視することにより、なる、Lの整数倍での商として考えることができる フーリエ変換の畳み込み性…

7 Group theory ぱらぱらめくる『Engineering applications of noncommutative harmonic analysis』

群論の基礎 順列、行列、個セット、軌道、写像、共役( Class functions。群の要素を複素数に対応付ける関数であって、共役にある群要素のそれが同じであるようなもの 有限群 リー群

6 Rigid-body motion ぱらぱらめくる『Engineering applications of noncommutative harmonic analysis』

剛体は回転するが、平行移動もする 3次元行列を4次元行列にして表現できる(同次座標系) フルネ-セレ、Moving frameもこの章の対象 閉曲線に関する知見:閉じるとは、動き表現的にどういうことか 『数』の工夫(実数・複素数・四元数)の代わりに"Dual number…

1 Introduction and overview of applications ぱらぱらめくる『Engineering applications of noncommutative harmonic analysis』

順序が結果に影響する処理の例(非可換) 調和解析。可換と非可換 基本波の線形結合で表す解析 それの基礎には、関数が積分できるかとか、滑らかか、とか、無限遠で十分小さいか、などが大事になることが基礎となっている。その性質は可換な場合に構成されたの…

5 Rotations in three dimensions ぱらぱらめくる『Engineering applications of noncommutative harmonic analysis』

変形一般と、それに制約を入れたものとしての剛体の運動 剛体の回転を行列で表現する 等長変換であること。そこから得られる固有値制約 Skew-Symmetric行列との関係。外積 回転の合成と行列の積 回転のパラメタ表示、その色々 角座標はその一つに過ぎない 回…

ぱらぱらめくる『コホモロジーのこころ』

コホモロジーのこころ作者: 加藤五郎出版社/メーカー: 岩波書店発売日: 2003/03/25メディア: 単行本購入: 2人 クリック: 46回この商品を含むブログ (4件) を見る 目次 まえがき カテゴリーと関手 数学の舞台、カテゴリー カテゴリー論の大黒柱、米田の補題 …

2 非可換幾何学入門 ぱらぱらめくる『非可換幾何学入門』

この章の目的は、以下を示すこと 古典的な空間概念の定式化は、集合Xおよび、Xと実数直線Rとの関係から始められた 実解析学において、そのやり方には限界がある 空間XとRとの関係の場合分け(とそれに登場する古典的概念) 可測空間 位相空間 可微分多様体 距…

1 序論 ぱらぱらめくる『非可換幾何学入門』

空間と幾何って言ったら、ふつう、「広がりがある〜隣関係がわかる」ものを対象にし(位相幾何)、そこに「長さとか面積とか言った「測りもの(測度)」がある。この「測りもの」をするには、微分形式(この方向には、こういう具合で長さを測るよ)を張り付ける 以…

はじめに ぱらぱらめくる『非可換幾何学入門』

代数幾何は、『幾何学的な空間と可換環論との関係をあきらかに』した(代数幾何は、××=0が幾何学的オブジェクトを表していることを意味していて、その=0の等式を解くことが代数幾何とする。その等式を解くときの代数構造が可換環) 本書は、(実解析学の範疇で)…

ぱらぱらめくる『非可換幾何学入門』

非可換幾何学入門作者: A.コンヌ,丸山文綱出版社/メーカー: 岩波書店発売日: 1999/08/27メディア: 単行本 クリック: 3回この商品を含むブログ (1件) を見る 関連記事 この本に関するメモ 量子力学における抽象と具体 目次 はじめに 第1章 序論 第2章 非可…

ぱらぱらめくる『Information, Physics, and Computation』

Information, Physics, and Computation (Oxford Graduate Texts)作者: Marc Mezard,Andrea Montanari出版社/メーカー: Oxford Univ Pr発売日: 2009/03/27メディア: ハードカバー クリック: 1回この商品を含むブログを見る 目次 Part I Background 1 Introdu…

ぱらぱらめくる『幾何学への新しい視点 不確定性と非可換時空』

幾何学への新しい視点―不確定性と非可換時空 (幾何学をみる)作者: 大森英樹出版社/メーカー: 遊星社発売日: 2008/10/01メディア: 単行本 クリック: 2回この商品を含むブログ (1件) を見る 目次 はじめに 1章 矢や永久に進めない? 2章 水平線って見えるん…

7 抽象代数を歴史的に考える授業の例示 ぱらぱらめくる『抽象代数の歴史』

5問を考えて、抽象代数の本質を理解する、という試み その構図 具体的問題→抽象化 抽象化→本来の問題の解決 抽象化→他の問題の解決 なぜか? 記号代数、公理系(独立性、無矛盾性) の整数解はなにか? 一意分解域、ユークリッド域、イデアル 定規とコンパス…