行列の指数関数
昨日の記事 Wyle form, 正準交換関係, 非可換トーラス - ryamadaのコンピュータ・数学メモ で、非可換トーラス絡みのことを書いた 非可換トーラスを具体的に想定するときに、clock and shift matricesというのが使える、と言う話も書いた そのことは、量子力…
こちらの記事を読む library(BosonSampling) library(complexplus) m <- 2 # size of matrix (m x m) U <- randomUnitary(m) V <- randomUnitary(m) # 複素正方行列 # BosonSampling::randomUnitary() の中身をなぞる M <- matrix(complex(real = rnorm(m^2)…
2変量常微分方程式が射影幾何を通じて複比を保存する数列を生じることを昨日の記事で示した 今日は、複比を満足する数列からその常微分方程式を逆演算したい 複比数列の両端収束値を、数列から複比を求め(推定し)る これにより幾何的射影変換図の3つの点が…
適当に行列を作ってやってみる my.matrix.eigen <- function(lambdas,vs){ Vs <- t(t(vs) * lambdas) Vs %*% solve(vs) } exp.m <- function(A,n){ # 固有値分解 eigen.out<-eigen(A) # P=V,P^{-1}=U V<-eigen.out[[2]] U<-solve(V) B<-diag(exp(eigen.out[[…
2変量の常微分方程式があって、2変数の時間変化が2つのベクトルを軸としてその2軸のそれぞれに指数関数の係数を与えた和で表されるとき、そのy=1平面への射影に複比保存が表れるのだが、それの「証明」というか、ひたすらな式変形で納得するためのメモ …