ストークスの定理
8.1 Hodge Decomposition 8.2 Homology Generators and Harmonic Bases 8.3 Connections and Parallel Transport 8.4 Vector Field Design
球面を平面に直すとゆがむ 長さと角度の両方を保存して平面化できないことを意味する 長さのゆがみは許容して、角度だけは保存することはできる。共形変換と言う 共形変換は平面を複素平面としてみることで説明することが多い 純虚数は複素平面での1/4回転を…
ラプラシアンと、ラプラシアンを用いた微分方程式であるポアソン方程式について。そしてのその離散版について スカラー場があって、その微分をしてベクトル場にして、そのベクトル場のdivergenceを取ってスカラー場と作りたい 微分形式を使うにしろ使わない…
離散三角メッシュの頂点の法線方向の定義についての章。複数の決め方がある 三角形の面積が法線ベクトルであることを利用して、面積の局所変化(gradient)を用いる方法 埋め込み関数をラプラシアンしたものが平均曲率の大きさを持つ法線ベクトルになることを…
球かドーナツか、などの話しとその離散版の話。今回は(も)省略 4.1 Euler Characteristic 4.2 Regular Meshes and Average Valence 4.3 Gauss-Bonnet 4.4 Numerical Tests and Convergence
3.1 Vectors and 1-Forms ベクトルは向きと大きさを持つもの ベクトルについて情報を取り出す関数があって、それは、ある方向に関するベクトルの成分を返す関数。これが1形式(covector) ベクトルも1形式も向きと大きさを持つので、同じもののようだが、片や…
2.1 曲面の幾何 曲面を考える 曲面を埋め込む関数fがある 曲面を考えるときには、接平面も考える 接平面に含まれる接ベクトルというものもある 接平面に垂直な法線ベクトルというものもある。面には二通りの法線方向が取れるので、どちらを基準にするかを考…
Topics include: curves and surfaces, curvature, connections and parallel transport, exterior algebra, exterior calculus, Stokes’ theorem, simplicial homology, de Rham cohomology, Helmholtz-Hodge decomposition, conformal mapping, finite ele…
テンソルについて整理したので、再度、読み直してみる テキストはこちら 構成 1 Introduction 2 Quick and Dirty Introduction to Differential Geometry 3 Quick and Dirty Introduction to Exterior Calculus 4 Topological Invariants of Discrete Surfac…