フルネ=セレ

フルネ=セレと射影幾何

複比保存数列とボルツマン方程式と用量反応曲線のことを書いた 曲線が3次元空間で素直な形をしているときにそれを射影幾何的に投影すると…という話に用量反応曲線に用いた最適化関数を使おうとするとパラメタの数がどんどん多くなってちょっと大変であるこ…

進行方向が巡回するとき

フルネ=セレの行列は、曲線の曲がり具合をパラメタ表示したもの Moving frameの弧長パラメタに関する1次微分 曲線の曲がり具合が曲線に沿って「一定」であるとき、なにかしらの行列を使って と表すことができる。 ただしMは回転を表す行列である 昨日の記事…

進行方向が巡回するとき2

Moving frameを回転する回転行列とフルネ=セレの行列の関係を考える フレネ=セレの行列は 一方、Moving frameを回転させる行列は ここで、回転行列を特異値に分解しとすると となる を十分小さくすれば、回転行列の処理を繰り返しても曲線が描ける このよう…

曲率・捩率…

2年ぶりに再読する『じっくりと学ぶ曲線と曲面』 じっくり学ぶ曲線と曲面―微分幾何学初歩作者: 中内伸光出版社/メーカー: 共立出版発売日: 2005/09/15メディア: 単行本購入: 2人 クリック: 29回この商品を含むブログ (15件) を見る 2次元曲線は曲率で定義 …

n次元曲線

動標構とフレネ=セレの係数 曲線上の点に定める正規直交座標系で以下の条件を満たす 曲線上の等速運動(単位時間あたりの移動距離が1であるような運動)を考える 動標構の第1方向単位ベクトルは、その点での速度ベクトルとする 動標構は曲線上の位置によって…