2016-11-01から1ヶ月間の記事一覧

対数をとって凸か凹か

単調減少関数 がある 今、と言う2分割を考える との大小はどう決まる? 原点からへの直線はである 今、であるなら、 ある生起確率関数があるとする 生起確率と、とを比べたいとする この大小は、を取って上記を検討することでわかる → の場合は分割の影響が…

等温座標系

メモPDF

細目次10 Qunatum Loewner evolution ぱらぱらめくる『Universal Randomness in 2D』

10 Quantum Loewner evolution (QLE) 著者の成果なので、重い内容だが、全像とのバランスではちょっと過度な重みづけかも 10.1 QLE Overview 10.2 Background on several relevant models 10.3 Measure-driven Loewner evolution (SLEのドライブ関数の拡張) …

細目次9 Mating trees and the peanosphere ぱらぱらめくる『Universal Randomness in 2D』

9 Mating trees and the peanosphere ランダム過程で面を構成するために 9.1 Overview 9.2 Constructing a topological sphere from a pair of trees 9.3 Liouville quantum gravity as a scaling limit 9.4 Gluing trees of disks 9.5 Quantum wedges, cone…

8 Conformal welding and the quantum zipper ぱらぱらめくる『Universal Randomness in 2D』

8 Conformal welding and the quantum zipper うーーーん。???考えている空間がみょうちくりんになってきた? 8.1 Welding simple quantum wedges 8.2 Random geometries from the Gaussian free field 8.3 Theorem statements: conformal weldings 8.4 C…

7 Imaginary geometry ぱらぱらめくる『Universal Randomness in 2D』

7 Imaginary geometry 虚数を使う?幾何? 複素関数・複素平面・共形変換?? 7.1 Forward coupling : flow lines of ??? 7.2 Chordal SLE/GFF couplings 組み合わせ用 7.3 Proofs of coupling theorems 7.4 Flow lines starting from the boundary 7.5 I…

6 Random growth trajectories ぱらぱらめくる『Universal Randomness in 2D』

6 Random growth trajectories 6.1 Eden model and first passage percoration 成長・軌道?? 6.2 Diffusion limited aggregation (DLA) and the dieelectric breakdown model ペタペタくっついて成長する。過去の経過を反映した帰結の姿のランダム性? 6.3…

5 Random surfaces ぱらぱらめくる『Universal Randomness in 2D』

今、これが一番知りたい・・・。細目次も佳境感満載… 5 Random surfaces 5.1 Planar maps 平面グラフ 5.2 Decorated surfaces and Laplacian determinants グラフラプラシアンとspanning treesの数 5.3 Mullin-Bernardi bijection 何か使いやすい道具を使い…

4 Random curves and loop ensembles ぱらぱらめくる『Universal Randomness in 2D』

4 Random curves and loop ensembles 4.1 Schramm-Loewner evolution: basic definitions and phases 4.2 Definition of SLE() 4.3 Loop erased random walk and uniform spanning tree SLE曲線である種の酔歩を木が説明される 4.4 Critical percoration int…

3 Random generalized functions ぱらぱらめくる『Universal Randomness in 2D』

3 Random generalized functions ランダムな面 3.1 Tempered distributions and Fourier transforms フーリエ変換できる扱いやすい分布 3.2 Gaussian free fields (GFF) 3.3 Local sets of the GFF 3.4 Fractional and log-correlated Gaussian fields 3.5 D…

2 Random trees ぱらぱらめくる『Universal Randomness in 2D』

2 Random trees 2.1 Galton-Watson trees ある種のランダム木 2.2 Aldous's continuum random tree 離散な設定から連続の設定へ 2.3 Levy trees and stable looptrees ブラウン運動に対応するGalton-Watsonに対して、連続な変化を持たせた木はLevy trees 2.4…

1 Random processes ぱらぱらめくる『Universal Randomness in 2D』

1 Random processes 1.1 きほんのき、ブラウン運動 1.2 ベッセル過程 多次元ブラウン運動の距離評価 1.3 Brownian excursion ブラウン散歩, meanders ぶらぶら歩き、bridges ブリッジ。少し特徴のあるブラウン的動き 1.4 Stable Levy processes 連続性にする…

ぱらぱらめくる『Universal Randomness in 2D』

文書はこちら これをライフサイエンス統計に読み換えれば、現在やっている対象の大部分がカバーされるかもしれないと期待される 発想は色々な対象を基本的な確率過程で説明することで、対象同士の関係が見える、というところに根を持ち、とりあえずの成果はQ…

簡単版〜ぱらぱらめくる『Universal Randomness in 2D』

ブラウン運動が基本。その多次元版・距離化のベッセル過程。連続化であるレヴィ過程、ランダムな木(第1、2章) 関数について解析するために関数解析・関数空間・汎関数(第3章) 面を平面グラフで覆うこと、それを木に対応付けること(第5章) SLE曲線はLoewn…

一意化定理

どんな単純につながった平面上の形も、共形変換をすることで単位円板に変形することができる リーマンの写像定理 これをするのに、平面を複素平面として考えると、複素数の演算が「局所直交を守る」性質を持つことから共形変換が保証され、うまく行く これを…

ちょっとずらして解く

(Mは正方行列、xはベクトル)を解くと、Mのdeterminantが0出なければ、xは0ベクトルになるけれど、それが欲しいわけじゃなくて、をだいたい満足するxが欲しいときの話 こちらにあるようにWillmoreフローの計算機解の一環として、次のような問題がある を解き…