scikit-learn

Classifiersの比較 ぱらぱらめくるscikit-learnのUser guide

http://scikit-learn.org/stable/auto_examples/classification/plot_classifier_comparison.html # Code source: Gaël Varoquaux # Andreas Müller # Modified for documentation by Jaques Grobler # License: BSD 3 clause # 色々importする # …

7. Computational Performance ぱらぱらめくるscikit-learnのUser guide

7.1 Prediction Latency 7.2 Prediction Throughput 7.3 Tips and Tricks

6. Strategies to scale computationally: bigger data ぱらぱらめくるscikit-learnのUser guide

6.1 Scaling with Instances using Out-of-core Learning

5. Dataset loading utilities ぱらぱらめくるscikit-learnのUser guide

5.1 General Dataset API 5.2 Toy Datasets 5.3 Sample Images 5.4 Sample Generators 5.5 Datasets in Svmlight/libsvm format 5.6 The Olivetti Faces Dataset 5.7 The 20 Newsgroups Text Dataset 5.8 Downloading Datasets from the mldata.org Reposito…

4. Dataset transformations ぱらぱらめくるscikit-learnのUser guide

4.1 Pipeline and Feature Union: Combining Estimators 4.2 Feature Extraction 4.3 Preprocessing Data 4.4 Unsupervised Dimensionality Reduction 4.5 Random Projection 4.6 Kernel Approximation 4.7 Pairwise Metrices, Affinities and Kernels 4.8 T…

3. Model selection and evaluation ぱらぱらめくるscikit-learnのUser guide

3.1 Cross-validation: Evaluating Estimator Performance 3.2 Grid Search: Searching for Estimator Parameters 3.3 Model Evaluation: Quantifying the Quality of Predictions 3.4 Model Persistence 3.5 Validation Curves: Plotting Scores to Evaluate…

2. Unsupervised learning ぱらぱらめくるscikit-learnのUser guide

2.1 Gaussian Mixture Models 2.2 Manifold Learning 2.3 Clustering 2.4 Biclustering 2.5 Decomposing Signals in Components (Matrix Factorization Problems) 2.6 Covariance Estimation 2.7 Novelty and Outlier Detection 2.8 Density Estimation 2.9 …

1. Supervised learning ぱらぱらめくるscikit-learnのUser guide

1.1 Generalized Linear Models 1.1.1 普通の線形回帰 from sklearn import linear_model clf = linear_model.LinearRegression() x = [[0, 0], [1, 1], [2, 2]] y = [0, 1, 2] clf.fit (x, y) clf.coef_ clf.intercept_ xは二次元アレイ、yは一次元アレイ。…

ぱらぱらめくるscikit-learnのUser guide

昨日の記事でpythonのscikit-learnをいじってみた 今日はUser_guideをぱらぱらめくってみる まず、目次 1. Supervised learning 2. Unsupervised learning 3. Model selection and evaluation 4. Dataset transformations 5. Dataset loading utilities 6. S…

pythonで機械学習 scikit-learn

昨日の記事でpython(x,y)をWindows 7に入れた さて(Rよりpythonの方が楽と思われる)機械学習をやってみる scikit-learnモジュールのサイト pip install scikit-learn としてモジュールをインストールした後、python(x,y)にExamplesのサンプルを張り付けてみ…