- 隣接行列Aのm乗の(i,j)要素の値は、i,j間のグラフ距離
- 3.1 Eigenvalues
- n完全グラフの隣接行列の固有値は、1がn-1重で-1が1個。p,q-完全2部グラフのそれはとp+q-2重の0
- Full-cycle permutation matrix of order nの場合、隣接行列の固有値は、
- n頂点を結ぶパスグラフ(サイクルの両方向)のとき
my.full.cycle <- function(n){
Q <- diag(n)
Q <- Q[,c(n,1:(n-1))]
Q
}
n <- 8
Q <- my.full.cycle(n)
C <- Q + t(Q)
P <- my.full.cycle(n)
P[n,1] <- 0
P <- P + t(P)
Q
plot(graph.adjacency(Q))
eigen(Q)[[1]]
exp(2*pi*1i*(0:(n-1))/n)
C
plot(graph.adjacency(C))
eigen(C)[[1]]
2*cos(2*pi*(0:(n-1))/n)
P
plot(graph.adjacency(P))
eigen(P)[[1]]
2*cos(2*pi*(1:n)/(n+1))
> n <- 8
> Q <- my.full.cycle(n)
> C <- Q + t(Q)
>
> P <- my.full.cycle(n)
> P[n,1] <- 0
> P <- P + t(P)
>
> Q
[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8]
[1,] 0 1 0 0 0 0 0 0
[2,] 0 0 1 0 0 0 0 0
[3,] 0 0 0 1 0 0 0 0
[4,] 0 0 0 0 1 0 0 0
[5,] 0 0 0 0 0 1 0 0
[6,] 0 0 0 0 0 0 1 0
[7,] 0 0 0 0 0 0 0 1
[8,] 1 0 0 0 0 0 0 0
> plot(graph.adjacency(Q))
> eigen(Q)[[1]]
[1] 0.0000000+1.0000000i 0.0000000-1.0000000i -1.0000000+0.0000000i
[4] -0.7071068+0.7071068i -0.7071068-0.7071068i 1.0000000+0.0000000i
[7] 0.7071068+0.7071068i 0.7071068-0.7071068i
> exp(2*pi*1i*(0:(n-1))/n)
[1] 1.0000000+0.0000000i 0.7071068+0.7071068i 0.0000000+1.0000000i
[4] -0.7071068+0.7071068i -1.0000000+0.0000000i -0.7071068-0.7071068i
[7] 0.0000000-1.0000000i 0.7071068-0.7071068i
>
> C
[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8]
[1,] 0 1 0 0 0 0 0 1
[2,] 1 0 1 0 0 0 0 0
[3,] 0 1 0 1 0 0 0 0
[4,] 0 0 1 0 1 0 0 0
[5,] 0 0 0 1 0 1 0 0
[6,] 0 0 0 0 1 0 1 0
[7,] 0 0 0 0 0 1 0 1
[8,] 1 0 0 0 0 0 1 0
> plot(graph.adjacency(C))
> eigen(C)[[1]]
[1] 2.000000e+00 1.414214e+00 1.414214e+00 1.332268e-15 0.000000e+00
[6] -1.414214e+00 -1.414214e+00 -2.000000e+00
> 2*cos(2*pi*(0:(n-1))/n)
[1] 2.000000e+00 1.414214e+00 1.224606e-16 -1.414214e+00 -2.000000e+00
[6] -1.414214e+00 -3.673819e-16 1.414214e+00
>
> P
[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8]
[1,] 0 1 0 0 0 0 0 0
[2,] 1 0 1 0 0 0 0 0
[3,] 0 1 0 1 0 0 0 0
[4,] 0 0 1 0 1 0 0 0
[5,] 0 0 0 1 0 1 0 0
[6,] 0 0 0 0 1 0 1 0
[7,] 0 0 0 0 0 1 0 1
[8,] 0 0 0 0 0 0 1 0
> plot(graph.adjacency(P))
> eigen(P)[[1]]
[1] 1.8793852 1.5320889 1.0000000 0.3472964 -0.3472964 -1.0000000 -1.5320889
[8] -1.8793852
> exp(2*pi*1i*(1:n)/(n+1))
[1] 0.7660444+0.6427876i 0.1736482+0.9848078i -0.5000000+0.8660254i
[4] -0.9396926+0.3420201i -0.9396926-0.3420201i -0.5000000-0.8660254i
[7] 0.1736482-0.9848078i 0.7660444-0.6427876i
> eigen(P)[[1]]
[1] 1.8793852 1.5320889 1.0000000 0.3472964 -0.3472964 -1.0000000 -1.5320889
[8] -1.8793852
> 2*cos(2*pi*(1:n)/(n+1))
[1] 1.5320889 0.3472964 -1.0000000 -1.8793852 -1.8793852 -1.0000000 0.3472964
[8] 1.5320889
- 3.2 Determinant
- グラフのサブグラフであって、サイクルになるものと、単独のエッジになるものとをelementary subgraphと呼ぶ。サイクルであるelementary subgraphsの数をc(H),エッジ単独になるものの数をc1(H)とすると、と言う関係がある
- 3.3 (上下)界
- 3.4 Energy of a graph
- 3.5 Antiadjacency matrix of a directed graph
- AをAdajacency matrixとして、全成分が1の行列Jを使ってとしたこのBをantiadjacency matrixと言う
- Acyclic graphでハミルトニアンパスがあるときdet B= 1。そうでないときdet B= 0
- 、ただし、ではi個のノードで出来た有向パスの数
- 3.6 Nonsingular trees
- 木のadjacency matrixはsingular のこともあり、nonsingularなこともあるが、nonsingularなのはperfect matchingをもつときに限り、perfect matcingを持てばnonsingular