6. フーリエ級数へのイントロダクション:ぱらぱらめくる『A Short Course on Approximation Theory』

x <- c(0,0,0,100,0,0,0)
y <- c(0,0,1, 2 ,1,0,0)/4
zapsmall(convolve(x,y))         #  *NOT* what you first thought.
zapsmall(convolve(x, y[3:5], type="f")) # rather
x <- rnorm(50)
y <- rnorm(50)
# Circular convolution *has* this symmetry:
all.equal(convolve(x,y, conj = FALSE), rev(convolve(rev(y),x)))

n <- length(x <- -20:24)
y <- (x-10)^2/1000 + rnorm(x)/8

Han <- function(y) # Hanning
       convolve(y, c(1,2,1)/4, type = "filter")

plot(x,y, main="Using  convolve(.) for Hanning filters")
lines(x[-c(1  , n)      ], Han(y), col="red")
lines(x[-c(1:2, (n-1):n)], Han(Han(y)), lwd=2, col="dark blue")