
Moments and Moment Invariants in Pattern Recognition
- 作者: Jan Flusser,Barbara Zitova,Tomas Suk
- 出版社/メーカー: Wiley
- 発売日: 2009/12/14
- メディア: ハードカバー
- この商品を含むブログを見る
- 大目次
- 1 Introduction to moments
- 2 Moment invariants to translation, rotation and scaling
- 3 Affine moment invariants
- 4 Implicit invariants to elastic transformations
- 5 Invariants to convolution
- 6 Orthogonal moments
- 7 Algorithms for moment computation
- 8 Applications
- 中目次
- 1 Introduction to moments
- Motivation
- What are invariants?
- What are moments?
- Outline of the book
- 2 Moment invariants to translation, rotation and scaling
- Introduction
- Rotation invariants from complex moments
- Pseudoinvariants
- Combined invariants to TRS and constract changes
- Rotation invariants for recognition of symmetric objects
- Rotation invariants via image normalization
- Invariants to nonuniform scaling
- TRS invariants in 3D
- Conclusion
- 3 Affine moment invariants
- Introduction
- AMIs derived from the Funcamental theorem
- AMIs generated by graphs
- AMIs via image normalization
- Derivation of the AMIs from the Cayley-Aronhold equation
- Numerical experiments
- Affine invariants of color images
- Generalization of three dimensions
- Conclusion
- 4 Implicit invariants to elastic transformations
- Introduction
- General moments under a polynomial transform
- Explicit and implicit invariants
- Implicit invariants as a minimization task
- Numerical experiments
- Conclusion
- 5 Invariants to convolution
- 6 Orthogonal moments
- Introduction
- Moments orthogonal on a rectangle
- Moments orthogonal on a disk
- Object recognition by ZMs
- Image reconstruction from moments
- Three-dimensional OG moments
- Conclustion
- 7 Algorithms for moment computation
- Introduction
- Moments in a discrete domain
- Geometric moments of binary images
- Geometric moments of graylevel images
- Efficient methods for calculating OG moments
- Generalization to n dimensions
- Conclusion
- 8 Applications
- Introduction
- Object representation and recognition
- Image registration
- Robot navigation
- Image retrieval
- Watermarking
- Medical imaging
- Forensic applications
- Miscellaneous applications
- Conclusion
- 1 Introduction to moments